

EX-TEND 212 w/ 1 additional sleeves, for 12"

EX-TEND 212, for 12" MJ fittings or pipe.

EX-TEND 212 w/ 2 additional sleeves, for 12" MJ fittings or pipe.

Features and Application:

- Sizes 3" through 24"
- · Hydrostatically tested prior to shipment.
- Rated 350 PSI working water pressure.
- Constructed of ASTM A536, 65-45-12 Ductile Iron.
- 15 mils of fusion bonded epoxy coating of all "wetted" parts.
- Coal Tar Epoxy coating of exterior parts.
- Self Restrained at full expansion with out the use of external tie bars.
- Seals conform to the applicable requirements of ANSI/AWWA C111/A21.11.
- Insertion of additional sleeves for increased expansion capacity can be done at the factory or in the field as the need occurs.
- For use on water or wastewater pipelines subject to hydrostatic pressure and tested in accordance with either AWWA C600 or ASTM D2774.

Sample Specification

Expansion joints shall be installed in the locations indicated on the drawings and shall be manufactured of ductile iron conforming to the material properties of ANSI/AWWA C153/A21.53. All expansion joints shall be capable of expanding or contracting to the amounts shown on the drawings or indicated in the specifications, but in no case shall be less than 4" total axial movement. Separation beyond the maximum extension of the expansion joint shall be prevented without the use of external tie rods. Each expansion joint shall be pressure tested against its own restraint to a minimum of 350 psi. MEGALUG joint restraint shall be provided with each mechanical joint connection. All pressure containing parts shall be lined with a minimum of 15 mils of fusion bonded epoxy, conforming to the applicable requirements of ANSI/AWWA C213 and shall be tested with a 1500 volt spark test conforming to said specification. All expansion joints shall be EX-TEND 200 as manufactured by EBAA Iron, Inc. or approved equal.

EX-TEND 200® Submittal Reference Drawing

			Flange by Flange EX-TEND 200			Mechar	Mechanical Joint by Mechanical Joint EX-TEND 200				
Nominal	Expansion	Series			Shipping Weight	Series				Shipping Weight	
Pipe Size	(linear)	Number	0.D.	Laying*	(Approx.)	Number	0.D.	Laying*	Total*	(Approx.)	
4	4	204F0	9	18.2	69	204M0	9.1	15.6	20.6	74	
	8	204F1		33.5	113	204M1		30.9	35.9	118	
	12	204F2		48.8	157	204M2		46.2	51.2	162	
6	4	206F0	11.0	19.5	95	206M0	11.1	15.4	20.4	96	
	8	206F1		33.8	160	206M1		29.7	34.7	161	
	12	206F2		48.1	225	206M2		44.0	49.0	226	
8	4	208F0	13.5	20.7	143	208M0	13.3	16.4	21.4	139	
	8	208F1		37.8	235	208M1		33.5	38.5	231	
	12	208F2		54.9	327	208M2		50.6	55.6	323	
10	4	210F0	16.0	21.0	196	210 MO	15.7	16.5	21.5	192	
	8	210F1		36.8	333	210M1		30.5	35.5	329	
	12	210F2		52.6	470	210M2		44.5	49.5	466	
12	4	212F0	19.0	21.5	245	212M0	17.9	19.2	24.2	244	
	8	212F1		37.5	396	212M1		35.2	40.2	395	
	12	212F2		53.5	547	212M2		51.2	56.2	546	
14	8	214F0	21.0	32.4	389	214M0	20.3	27.0	34.0	432	
	16	214F1		58.8	677	214M1		53.3	60.0	677	
	24	214+2		85.3	922	214M2		79.6	87.0	921	
16	8	216F0	23.5	33.9	621	216M0	22.6	31.3	38.8	621	
	16	216F1		61.8	959	216M1		59.2	66.2	959	
40	24	216+2		89.7	1297	216M2		87.1	94.1	1297	
18	8	218FU				218M0					
	16	2181				218W1					
••	24	218F2	AT 5			218M2					
20	8	220F0	27.5	32.7	701	220M0	27.1	27.5	34.5	683	
	16	22011		60.0	1123	220W1		54.8	61.8	1105	
	24	22012	00	87.3	1545	220142		82.1	89.1	1527	
24	8	224FU	32	33.5	908	224WU	31.6	29.0	36.0	882	
	16	22411		60.8	1610	224M1		56.3	63.3	1584	
20	24	22112		88.1	2312	224M2		83.6	90.6	2286	
30	10	230FU									
20	10	00050	10.0	10.7	0047						
20	10	230FU	40.0	40./	234/						

* Laying Lengths and Total Lengths reflect unit set at midpoint of expansion capacity

Note: Dimensions are in inches and are subject to change without notice. Call for dimensions and availability of larger sizes. For applications, end combinations, or pressures other than shown, please contact EBAA.

Seals **Coal Tar** conform applicable

Epoxy is applied to the exterior requirem

parts to form a tough and rugged barrier against corrosion. The catalyzed coal tar epoxy conforms to the material requirements of AWWA C210.

		_
		_
to the		
e	9	Contraction of the local division of the loc
ents		

of ANSI/AWWA C111/A21.11. Seals are factory lubricated. and are not subject to routine maintenance such as repacking or tightening to maintain seal.

Example:

1. Determine the expansions needed.

Self

Restrained

at full expansion

without the use

1000 Foot Bridge ... 6 in ductile iron pipe ... 120°F Total Temperature Change (1000Ft)(12 in/Ft)(120°F)(0.0000062 in/in/°F) = 8.93 in (Nearly 9 in)

of external tie rods. Each unit,

comes factory preset with 50%

compression, 50% expansion.

unless specified differently,

All states

2. Select the proper unit.

Referring to the chart on the opposite page we will require a 206M2 EX-TEND because of its ability to accommodate the nine inches of expansion needed, with its 12 inches of maximum expansion.

Fusion

Bonded

Epoxy is used

term corrosion protection, and is

applied to all "wetted" parts. The

coating is applied to a minimum

of 15 mils and is Holiday tested

accordance to ANSI/AWWA C213.

with a 1500 Volt spark test in

to give a long

3. Determine the installation preset.

Factory preset for the EX-TEND 200 is at a 50% Contraction 50% Expansion setting, but the preset can be changed in the field to accommodate the present installation temperature.

Expansion Coefficients Coefficient in./in./degree F Material **Ductile Iron** 0.0000062 0.000030 PVC **Cast Iron** 0.0000058 Steel 0.0000065 HDPE 0.000080 Concrete 0.0000055

The change in length (Δ L) due to thermal contraction/expansion is given by:

$L = L (\Delta T) (C)$

Where: L = length of pipe (inches) Δ T = change in temperature (degrees F) C = coefficient of thermal expansion

Installation Instructions for EX-TEND 2008

- 1. Remove Protective end covers.
- 2. Remove polyethylene sleeve and others materials.
- 3. Check interior, remove dirt and foreign material from interior and end connections.
- 4. For buried applications install polyethylene sleeve per ANSI/AWWA C105/A21.5 recommendations.
- 5. Assembly of flange joint:
 - a. Place flange o-ring in groove.
 - b. Place EX-TEND 200 flange against adjoining flange, installing and hand tighten bolts.
 - c. Check o-ring for proper position.
 - d. Tighten flange bolts.
- 6. Install mechanical joint EX-TEND 200 end connections using the EBAA Iron MEGALUG joint restraint suitable for adjacent pipe material. MEGALUG 1100 should be used on ductile iron pipe. MEGALUG 2000PV is to be used on PVC pipe. Assembly instructions for each of these products are included with the restraint device.
- 7. Assembly of restrained plain end:
 - a. Lubricate and install EBAA Seal gasket provided over plain end per ANSI/AWWA C600.
 - b. Insert plain end into adjacent mechanical joint bell.
 - c. Install and hand tighten T-bolts.
 - d. Tighten T-bolts per AWWA recommendations.
- 8. Remove shipping skid.
- 9. Touch up exterior coating as necessary. Use coal tar epoxy following manufacturer's instructions.

Important Notes

Due to hydrostatic forces that cause the EX-TEND 200 to expand, some applications may require blocking to isolate the areas of anticipated movement and to prevent this expansion from affecting adjacent piping.

The flanged outlets are dimensioned according to ANSI/AWWA C110/A21.10 with addition of the Oring. An O-ring is provided with each flange to provide a proven water tight seal to a minimum of 350 psi pressure.

Mechanical joint connections conform to the dimensional requirements of either ANSI/AWWA C110/A21.10 or ANSI/AWWA C153/A21.53 depending on the size.

FLEX-TEND[®] Family

FLEX-912, 12" Ball Joint

Protection From						
Shear	Bending Moments	Bending Moments	Expansion			
	w/Expansion	No Expansion	(linear)			
Yes	Yes	Yes	Yes			
No	Yes	Yes	Yes			
No	No	Yes	No			
No	No	No	Yes			
	Shear Yes No No No	Protect Shear Bending Moments w/Expansion Yes Yes No Yes No No No No No No No No	Protection From Shear Bending Moments Bending Moments w/Expansion No Expansion Yes Yes Yes No Yes Yes No Yes Yes No No Yes No No Yes No No No			

EBAA IRON Sales, Inc.

P.O. Box 857, Eastland, TX 76448 Tel: (254) 629-1737 Fax: (254) 629-8931 (800) 433-1716 within US and Canada ebaa@ebaa.com www.ebaa.com