

A COMPLETE SELECTION OF TOP ENTRY BALL VALVES FOR A WIDE RANGE OF SEVERE SERVICES

top entry ball valves

TABLE OF CONTENTS

Top Entry Valve Features2
Special Applications
How to Specify Apollo Top Entry Valves4
Materials Selection 5
Flanged Series Top Entry Valves
Socket Weld & NPT Series Top Entry Valves6
Buttweld Series Top Entry Valves7
Bonnet Dimensions for Actuator Mounting7
Dimensions For Actuator Pad Style Mounting8

Flanged Series Full Port Actuator Mounting Data 10 Operating Torques 11 Extended Bonnet 11 Fugitive Emissions 12 Steam Jacketed Valves 13 Seat Performance Data 14 Steam Charts & Application Guide 15-18 Flow Coefficients 19	Flanged Series Full Port Dimensional Data	9
Operating Torques11Extended Bonnet11Fugitive Emissions12Steam Jacketed Valves13Seat Performance Data14Steam Charts & Application Guide15-18Flow Coefficients19	Flanged Series Full Port Actuator Mounting Data	10
Extended Bonnet11Fugitive Emissions12Steam Jacketed Valves13Seat Performance Data14Steam Charts & Application Guide15-18Flow Coefficients19	Operating Torques	11
Fugitive Emissions 12 Steam Jacketed Valves 13 Seat Performance Data 14 Steam Charts & Application Guide 15-18 Flow Coefficients 19	Extended Bonnet	11
Steam Jacketed Valves 13 Seat Performance Data 14 Steam Charts & Application Guide 15-18 Flow Coefficients 19	Fugitive Emissions	12
Seat Performance Data 14 Steam Charts & Application Guide 15-18 Flow Coefficients 19	Steam Jacketed Valves	13
Steam Charts & Application Guide	Seat Performance Data	14
Flow Coefficients 19	Steam Charts & Application Guide15	-18
	Flow Coefficients	19

Temperature

Apollo® Top Entry Ball Valve Features

Top Entry Advantages:

- Self-Adjusting Seats: Compensate for Wear & Fluctuations
 - Spring Loaded Low Pressure Seals
- Pressure Activated Seating
- Built-In Antistatic Feature
- Simplified In-line Service
- Minimal Potential Leak Paths

Standards Compliance

(Most valves within this family of products comply with the requirements of these listed standards.)

- ASME B16.5 "Pipe Flanges and Flanged Fittings"
- ASME B16.10 "Face to Face Dimensions of Valves" (Except Full Port Valves)
- ASME B16.34 "Valves Flanged, Threaded, and Welding End."
- ASME B31.1 "Power Piping"
- ASME B31.3 "Chemical Plant and Petroleum Refinery Piping"
- ASME B31.8 "Gas Transmission and Distribution Piping Systems"
- API 607 "Fire Test Soft Seated Quarter Turn Valves" (Depending on Seat and Seal Selection)
- MSS SP-25 "Standard Marking System for Valves"
- MSS SP-61 "Pressure Testing of Steel Valves"
- MSS SP-72 "Ball Valves with Flanged of Buttweld Ends"

No Surprises

Apollo's Top Entry Ball Valves offer more. In addition to the three things everyone has come to expect from Conbraco: high quality products, competitive pricing and on time delivery, Apollo Top Entry Valves deliver additional premiums; a broader choice of

material for both internal and external components, more optional features to choose from, and selectable seal material combinations all resulting in an expanded serviceable application range.

Fit for Purpose

These premiums can be combined to create a product uniquely tailored to customer specifications and applications. These additional options allow a valve to be selected without compromising critical performance requirements or operating conveniences and without adding unnecessary features and the costs associated with them.

The Correct Design

The special "V" seating design introduced the self-adjusting seat to the floating ball

valve. This design does not rely on the built-in interference of conventional floating ball valves. It provides automatic compensation for pressure, temperature and wear. As these changes occur, the ball and seats are

continuously snugged down into the "V" resulting in positive leak-tight shutoff when using resilient seats. Maintaining a low pressure seal had been the most difficult condition for floating ball valves, the wedge effect on the ball and seats down the "V" assures continued low pressure sealing for the life of the seat.

All Apollo Top Entry Valves have an "anti-static" feature designed in. All valve configurations also feature blow-out proof stems as standard.

The Right Application

Apollo's Top Entry Valves provide simplified in-line maintenance in the most natural way. The valve body is allowed to act as a permanent part of the piping system. Potential leak paths are eliminated with the one piece body. Only the bonnet seal and stem seals remain to be counted. And with the variety of bonnet gaskets and stem seal arrangements available through the selection of optional features, even these threats can be minimized.

Special Applications

"Fire-Safe" Requirements

Two seat and several seal arrangements are available to address valves in applications where performance during and immediately after a fire are a concern. The #7 (PTFE) and "A" (RPTFE) seat configurations offer "tested" fire-safe performance. Flexible graphite in the form of die-cut, die-formed or spiral wound gaskets are available for bonnet seals. Die-formed Grafoil[®] in various configurations provide the stem seals.

Abrasive & Erosive Services

"Soft Seated" valves for abrasive services feature seat inserts completely confined by metallic components. Some designs feature inner and outer seat support rings, where the inner ring helps shield the seat insert from abrasives in the service. Other designs feature one piece seatholders which completely confine the seat insert and provide the same function in protecting the soft seat from abrasive particles in the flow stream.

In addition to the seat configuration options, resilient and rigid seat materials are available. The rigid seat choices include carbon-graphite, ceramic, peek, and carbon reinforced peek. The seats and the ball are both produced from ceramic in the one case. Any of these seats provide improved resistance to abrasion and erosion and additionally extend the potential service range to 1000°F.

For steam services, the #5 seat, a RPTFE containing 55% bronze and 5% molybdenum disulfide, is an excellent choice as is the #4 carbon-graphite seat.

Valves for Chlorine Service

Valves intended for service in dry chlorine require specific alloy selections, design features, cleaning and testing procedures. In accordance with the guidelines established by "The Chlorine Institute", Pamphlet 6-13th Edition (April 1993), Hastelloy trimmed carbon steel valves (model numbers starting with "CH") are suggested, and M35-1 trimmed carbon steel valves (model numbers beginning "CM") are the alternative for dry chlorine. All Hastelloy or M35-1 valves are also available, however, stainless steel valves or components are not recommended.

Selecting the required "HO" feature insures a valve that has been vented, cleaned, and tested to comply with the requirements of The Chlorine Institute Pamplet 6.

Oxygen Service Valves

For this application, cleanliness is of utmost importance. Apollo Top Entry Valves specified for oxygen service (option "PO") are subjected to rigorous preparation procedures including special pre-cleaning and inspection followed by ultrasonic cleaning and more intense inspection. All to insure that the finished valve is free of burrs and sharp edges as well as cleaned of hydrocarbon residues and particulate matter. Once valves destined for oxygen service enter Conbraco's clean room for preparation, they do not leave until they have been cleaned, assembled, thoroughly tested, inspected, tagged and bagged to meet customer requirements.

All Apollo Top Entry Valves have "anti-static" features designed in. Valves for oxygen service must also be

fitted with PTFE or RPTFE seats and packing. When planning to insulate valves, consider specifying one of our extended bonnet options.

High Temperature Service

For any applications utilizing metal, graphite, carbon graphite, peek, carbon reinforced peek, or ceramic seats, a ball stop should be incorporated into the valve design (option "RS"). This option is suggested at any temperature but it becomes a necessity above 500°F or when using ceramic or metal seats. The ball stop prevents the ball and seat from sliding down the 7° wedge when expansion caused by the temperature increase widens the wedge. If the ball was permitted to slide down the wedge, the valve would be locked tight when

> Apollo ANSI Class 150 Flanged 8-inch Titanium Top Entry Ball Valve

How To Specify Apollo® Top Entry Ball Valves

Select the valve model number 00-000-00

- CH Clamp-On Steam Jacket Stainless Steel
- CJ Clamp-On Steam Jacket Carbon Steel
- CL Cam-Lock Handle
- EB Extended Bonnet
- EO Round Handle
- FC Live Loaded Fugitive Emission w/ **Double RPTFE Chevron Packings**
- FG Fugitive Emission Bonnet with EVSP® 9000 Graphite Stem Packing

- GO 2 1/4" Stem Extension
- HH Vented Body
- HO Vented Body & Cleaned for **Chlorine Service**
- **HP** Vented Body & Cleaned for Hydrogen Peroxide Service
- * MG Gear Operator
- MT 2 Position Lock Plate
 - for Standard Bonnet
- MU 2 Position Lock Plate for Extended Bonnet

- Packings
- PJ Partial Steam Jacket
- PO Cleaned for Oxygen Service
- PP Cleaned for Industrial Gases
- RS Welded Ball Stop with Safety Cap
- TP Two Position Sliding Latch Lock Lever
- **ZO** PTFE Seals & Packings

Optional Features may be used alone or in combination (simply added in alphabetical order), however not all Note: combinations are available on all valves. This is a very limited list of the available options. Contact the factory for specific requirements and availability.

* MG Is Generic for Gear Operators. Contact Factory or Price Book For Specific Application and Correct Part Number.

[®] EVSP is a registered trademark of Garlock.

像 Ball Valves

	Sh	ell (Exte	ernal) Ma	aterial S	electior	า	
Material Designation	Α	С	Н	Μ	Ν	S	т
Description	Alloy 20	Carbon Steel	Hastelloy C	M35-1	Nickel (200)	Stainless Steel	Titanium
Body (Flanged ends)	ASTM A351-CN7M	ASTM A216-WCB	ASTM A494-CW12MW	ASTM A494-M35-1	ASTM A494-CZ100	ASTM A351-CF8M	ASTM B367-Gr C3
Body (Buttweld, Socket weld, and screwed ends)	ASTM A351-CN7M	ASTM A216-WCB	ASTM A494-CW12MW	ASTM A494-M35-1	ASTM A494-CZ100	ASTM A351-CF3M	ASTM B367-Gr C3
Bonnet	ASTM A351-CN7M	ASTM A216-WCB	ASTM A494-CW12MW	ASTM A494-M35-1	ASTM A494-C7100	ASTM A351-CE8M	ASTM B367-Gr C3
					//01/11///H04 02100		
	Cor	respon	ding Har	dware l	Materia	ls	
External Designation	Cor A	respon	ding Har	dware M	Materia N	Is s	T
External Designation Seat Ring(s) (from bar, tube or pipe depending on availability	ASTM B473-CB-3	C ASTM A269-316 (ASTM A276-316 (ASTM A312-316	ding Har H or ASTM B574-C276	ASTM B164-400 or ASTM B165-400	Materia N ASTM B160-200 ASTM B161- 200	S ASTM A269- 316 ASTM A276-316 or ASTM A312-316	T ASTM B348-Gr 2
External Designation Seat Ring(s) (from bar, tube or pipe depending on availability Internal Spring (1 or 2 s	Cor A ASTM B473-CB-3) eats) Inconel X-750	C ASTM A269-316 (ASTM A276-316 (ASTM A312-316 ASTM A313-Type 3	Herein Alter Contraction H ASTM B574-C276 Inconel X-750	M ASTM B164-400 or ASTM B165-400 Inconel X-750	Nateria N ASTM B160-200 ASTM B161-200 Inconel X-750	ASTM A269- 316 ASTM A276-316 or ASTM A312-316 ASTM A313-Type 316	T ASTM B348-Gr 2 Ti-6AL-4V

Packing Gland				316 Stainless Steel					
Packing Jam Nut				18-8 Stainless Steel					
Lever Assembly - (1/2 - 2")		304 Stainless Steel w/Vinyl Grip							
Lever Assembly - (3" - 8")			Stainless	Steel Wrench Head and	d Pipe				
Grounding Spring				18-8 Stainless Steel					
Studs				ASTM A193-B8M					
Nuts				ASTM A194-Gr.8					
Capscrews	ASTM A193-B8	ASTM A193-B7	ASTM A193-B8	ASTM A193-B8	ASTM A193-B8	ASTM A193-B8	ASTM A193-B8		

	Trim (Internal) Material Selection										
Material Designation	n A	Н	м	Ν	S	т					
Description	Alloy 20	Hastelloy C	M35-1	Nickel (200)	Stainless Steel	Titanium					
Ball	ASTM A351-CN7M or ASTM B473-CB-3	ASTM A494-CW12MW or ASTM B574-C276	ASTM A494-M35-1 or ASTM B164-K400	ASTM A494-CZ100 or ASTM B160-200	ASTM A351-CF8M or ASTM A479-316	ASTM B367-Gr C3 or ASTM B348-Gr 4-5					
Stem	ASTM B473-CB-3*	ASTM B574-C276	ASTM B164-K400	ASTM B160-200	ASTM A276-316*	ASTM B348-Gr 4-5					

* Denotes Hard Chrome Plated

	e e	Seat &	Seals I	Materia	I Selectio	on	
Seat Designation	1	2	3	4	5	D	6
Seat	PTFE	RPTFE	RPTFE	Carbon Graphite	55% Bronze, 5% Moly Filled PTFE	60% Stainless Filled PTFE	UHMWPE
Seat O-ring	-	-	-	-	-	-	-
Stem Packing	PTFE	RPTFE	Grafoil®	Grafoil®	Grafoil®	Grafoil®	Grafoil®
Bonnet Gasket	PTFE	RPTFE	Grafoil® (150-300) Spiral Wound Grafoil® (600)				
Default Suffix	ZO1 (All Classes)	001 (All Classes)	BO1 (150-300) BS1 (600)				
Seat Designation	U	7	8	9	Α	В	н
Seat	UHMWPE	API 607 - PTFE Fire Seat	Unfilled PEEK	CERAMIC (Seats & Ball)	API 607 RPTFE Fire Seat	Carbon Reinforced PEEK	High Temp. Graphite
Seat O-ring	-	PTFE	-	-	PTFE	-	-
Stem Packing	Grafoil®	Grafoil®	Grafoil®	Grafoil®	Grafoil®	Grafoil®	Grafoil®
Bonnet Gasket	Grafoil® (150-300) Spiral Wound Grafoil® (600)	Grafoil®	Grafoil® (150-300) Spiral Wound Grafoil® (600)	Grafoil® (150-300) Spiral Wound Grafoil® (600)	Grafoil®	Grafoil® (150-300) Spiral Wound Grafoil® (600)	Grafoil® (150-300) Spiralwound Graphoil®(600)
Default Suffix	BO1 (150-300) BS1 (600)	BO1	BO1 (150-300) BSI (600)	BO1 (150-300) BS1 (600)	BO1	BO1 (150-300) BS1 (600)	BO1 (150-300) BS1 (600)

Flanged Series Top Entry Ball Valves

Flanged Valve Dimensions

AN	SI 1	50 C	lass	Flanç	jed ⁻	Top E	ntry	Valve	es
Size	А	В	с	D	Е	F	G	н	J
1/2"	0.81	2.85	5.69	3.48	5.15	1.70	2.38	0.62	4
3/4"	0.81	2.31	4.62	3.54	5.15	1.76	2.75	0.62	4
1"	0.81	2.50	5.00	3.48	5.15	1.70	3.12	0.62	4
1-1/2"	1.17	3.25	6.50	4.17	5.94	1.96	3.87	0.62	4
2"	1.50	3.50	7.00	4.74	7.87	2.22	4.75	0.75	4
3"	2.25	4.00	8.00	6.41	19.12	2.93	6.00	0.75	4
4"	3.00	4.50	9.00	7.55	19.50	3.32	7.50	0.75	8*
6"**	4.50	7.75	15.50	10.06	36.00	4.97	9.50	0.87	8
8"**	6.00	9.00	18.00	14.39	47.00	6.51	11.75	0.87	8
10"** * Top 2	7.50 2 holes i	10.50 in each flan	21.00 ige are tap	15.50 oped 5/8-1	NA 1 UNC-2E	NA 3	14.25	1.00	12

** Gear Operator or Actuation Recommended.

ANSI 300 Class Flanged Top Entry Valves

Size	А	В	С	D	Е	F	G	н	J
1/2"	0.81	2.85	5.69	3.48	5.15	1.70	2.62	0.62	4
3/4"	0.81	3.00	6.00	3.63	5.15	1.86	3.25	0.75	4
1"	0.81	3.25	6.50	3.48	5.15	1.70	3.50	0.75	4
1 1/2"	1.17	3.75	7.50	4.17	5.94	1.96	4.50	0.88	4
2"	1.50	4.25	8.50	4.74	7.87	2.22	5.00	0.75	8
3"	2.25	5.56	11.13	6.41	19.12	2.93	6.63	0.88	8
4"	3.00	6.00	12.00	7.55	19.50	3.32	7.88	0.88	8
6" **	4.50	7.94	15.87	10.06	36.00	4.97	10.63	0.88	12
8" **	6.00	9.87	19.75	14.39	47.00	6.51	13.00	1.00	12
12"**	9.00	12.75	25.50	18.75	NA	NA	17.75	1.25	16*
* Top 6	holes in	each flan	ge are tapp	oed 1 1/8-	8UN-2B.				

** Gear Operator or Actuation Recommended.

	ISI é	500 C	lass	Flan	ged [·]	Top E	Intry	Valv	es
Sizo	٨	B	C	р	E	F	G	ц	
1/2"	0.81	3 25	6 50	4 93	8 50	1 92	2.62	62	4
3/4"	0.81	3.75	7.50	5.17	8.50	2.18	3.25	0.75	4
1"	0.81	4.25	8.50	5.23	8.50	2.21	3.50	0.75	4
1-1/2"	1.17	4.75	9.50	6.00	12.50	2.36	4.50	0.88	4
2"	1.50	5.75	11.50	7.02	14.75	2.97	5.00	0.75	8
3"	2.25	7.00	14.00	8.64	19.12	3.47	6.63	0.88	8
4" **	3.00	8.50	17.00	9.95	19.12	4.15	8.50	1.00	8
6" ** ** Gea	4.50 Ir Opera	11.00 tor or Actu	22.00 Jation Reco	NA ommende	NA ed.	5.78	11.50	1.12	12

Socket Weld & NPT Series Top Entry Valves

Socket Weld Valve Dimensions

AN Top	ANSI 300 Class Socket Weld Top Entry Valves										
Size	А	В	С	D	Е	F	G				
1/2"	0.81	2.15	4.29	3.48	5.15	1.70	0.38				
3/4"	0.81	1.96	3.91	3.48	5.15	1.70	0.56				
1"	0.81	1.96	3.91	3.48	5.15	1.70	0.50				
1-1/2	' 1.17	2.49	4.98	4.17	5.94	1.96	0.55				
2"	1.50	2.86	5.72	4.74	7.87	2.22	0.62				
3"	2.25	4.15	8.29	6.41	19.12	2.93	1.00				

ANSI 600 Class Socket Weld Top Entry Valves

Size	А	В	С	D	Е	F	G	
1/2"	0.81	2.37	4.73	4.93	8.50	1.92	0.38	
3/4"	0.81	2.18	4.35	4.93	8.50	1.92	0.56	
1"	0.81	2.18	4.35	4.93	8.50	1.92	0.50	
1-1/2"	1.17	2.62	5.23	5.77	12.50	2.14	0.55	
2"	1.50	2.99	5.98	6.59	14.75	2.54	0.62	

NPT Valve Dimensions

AN	ISI	300	Class	NPT	Тор	Entry	Valves
Size	А	В	С	D	Е	F	
1/2"	0.81	2.15	4.29	3.48	5.15	1.70	
3/4"	0.81	1.96	3.91	3.48	5.15	1.70	
1"	0.81	1.96	3.91	3.48	5.15	1.70	
1-1/2'	1.17	2.49	4.98	4.17	5.94	1.96	
2"	1.50	2.86	5.72	4.74	7.87	2.22	
3"	2.25	4.15	8.29	6.41	19.12	2.93	

ANSI 600 Class NPT Top Entry Valves

Size	А	В	С	D	Е	F	
1/2"	0.81	2.37	4.73	4.93	8.50	1.92	
3/4"	0.81	2.18	4.35	4.93	8.50	1.92	
1"	0.81	2.18	4.35	4.93	8.50	1.92	
1-1/2"	1.17	2.62	5.23	5.77	12.50	2.14	
2"	1.50	2.99	5.98	6.65	14.75	2.54	

Buttweld Series Top Entry Ball Valves

Buttweld Valve Dimensions

AN Va	ANSI 300 Class Buttweld* Top Entry Valves													
Size	А	в	С	D	F	F								
1/2"	0.81	2.75	5.50	3.48	5.15	1.70								
3/4"	0.81	3.00	6.00	3.48	5.15	1.70								
1"	0.81	3.25	6.50	3.66	5.15	1.88								
1-1/2	" 1.17	3.75	7.50	4.22	5.94	2.01								
2"	1.50	4.25	8.50	5.02	7.87	2.50								
3"	2.25	5.56	11.13	6.41	19.12	2.93								
4"	3.00	6.00	12.00	7.55	19.50	3.32								
6"**	4.50	7.94	15.88	10.06	36.00	4.97								
8"**	6.00	10.25	20.50	14.39	47.00	6.51								
* Ava ** Ge	* Available in Schedule 10, 40 and 80 where appropriate. ** Gear Operator or Actuation Recommended.													

AN Val	ISI 6 Ives	00 C	lass	Butt	weld	* Тор	Entry	
Size	А	В	С	D	Е	F		
1/2"	0.81	2.75	5.50	4.93	8.50	1.92		
3/4"	0.81	3.75	7.50	5.17	8.50	2.16		
1"	0.81	4.25	8.50	5.23	8.50	2.22		
1 1/2'	' 1.17	4.75	9.50	6.01	12.50	2.38		
2"	1.50	5.75	11.50	7.11	14.75	3.00		
3"	2.25	7.00	14.00	9.34	19.50	NA		
4" **	3.00	8.50	17.00	10.98	36.00	NA		
6" **	4.50	11.00	22.00	NA	NA	NA		
* Ava	ilable in	Schedul	e 40 and	80 wher	e approp	riate.		
** Ge	ar Oper	ator or A	ctuation	Recomm	ended.			

Bonnet Dimensions For Actuator Mounting

 \oplus

Fig.3

+.000 -.005

N

Studs

* Stem rises as the packing is adjusted. Allow sufficient clearances.

ANSI 150/300 Class Socket Weld, NPT & Buttweld Valves

Size	Fig. No.	А	В	С	D	Е	F	G	Н	J	К	L	М	Ν
1/2"	1	1.30	1.00	.77	.500	2.125	1.062	1.812	.906	.292	.36	1.00	NA	5/16-18
3/4"	1	1.30	1.00	.77	.500	2.125	1.062	1.812	.906	.292	.36	1.00	NA	5/16-18
1"	1	1.30	1.00	.77	.500	2.125	1.062	1.812	.906	.292	.36	1.00	NA	5/16-18
1-1/2"	1	2.04	1.68	.99	.625	2.812	1.406	2.250	1.125	.417	.36	1.25	NA	3/8-16
2"	1	2.39	1.91	1.06	.750	3.375	1.687	2.750	1.375	.482	.52	1.50	NA	1/2-13
3"	1	3.27	2.66	1.55	1.125	4.000	2.000	4.875	2.437	.730	.72	2.00	NA	5/8-11
4"	3	4.66	4.11	2.24	1.500	6.375	3.188	3.750	1.875	.970	NA	NA	6.00	9/16-12
6"	3	4.88	4.15	1.96	2.000	9.750	4.875	4.500	2.250	1.380	NA	NA	NA	3/4-10
8"	3	5.77	4.79	2.56	2.36	12.06	6.031	7.375	3.688	1.755	NA	NA	7.94	1-8
AN	SI 600 (Class S	Socket	Weld, NF	р <mark>т. & В</mark>	uttweld	d Valve	\$						
	0.000				., ~ 2	attron		·						
1/2"	2	2.48	2.06	.76	.625	2.125	1.062	1.816	.908	.412	.36	1.00	NA	7/16-18
3/4"	2	2.48	2.06	.76	.625	2.125	1.062	1.816	.908	.412	.36	1.00	NA	7/16-18
1"	2	2.48	2.06	.76	.625	2.125	1.062	1.816	.908	.412	.36	1.00	NA	7/16-18
1-1/2"	3	3.48	3.06	1.03	.750	2.814	1.407	2.250	1.125	.475	.36	1.25	NA	7/16-14
2"	3	3.95	3.47	1.03	.875	3.370	1.685	2.750	1.375	.535	.52	1.50	NA	1/2-13

Top Entry

Dimensions For Actuator Pad Style Mounting

Class 150 Flanged Valves														
	3/4"	1"	1-1/2"	2"	3"	4"	6"	8"	10"					
А	4.06	4.43	5.75	6.24	7.18	8.19	14.25	16.75	19.75					
В	2.03	2.21	2.88	3.12	3.59	4.09	7.13	8.38	9.88					
С	1.75	1.75	1.75	2.25	3.50	4.00	4.00	5.00	7.00					
D	0.88	0.88	0.88	1.13	1.75	2.00	2.00	2.50	3.50					
Е	0.70	0.62	1.37	1.48	2.32	3.33	4.22	5.28	6.50					
F	3.06	3.00	4.00	4.61	6.20	7.98	9.85	12.28	15.50					
G	2.36	2.38	2.63	3.13	3.88	4.63	5.63	7.00	9.00					
Н	0.77	0.77	0.99	1.06	1.55	2.24	1.96	2.56	2.90					
J	5/16-18	5/16-18	5/16-18	5/16-18	3/8-16	7/16-14	7/16-14	1/2-13	3/4-10					
К	0.48	0.48	0.47	0.47	0.56	0.66	0.50	0.66	1.25					
L	0.292	0.292	0.417	0.482	0.730	0.970	1.380	1.755	2.030					

Cl	Class 300 Flanged Valves													
	3/4"	1"	1-1/2"	2"	3"	4"	6"	8"						
А	5.31	5.75	6.63	7.56	9.88	10.69	14.31	18.06						
В	2.66	2.88	3.31	3.78	4.94	5.34	7.15	9.03						
С	1.75	1.75	1.75	2.25	3.50	4.00	4.00	5.00						
D	0.88	0.88	0.88	1.13	1.75	2.00	2.00	2.50						
Е	0.70	0.62	0.81	1.23	1.95	2.83	3.47	4.53						
F	3.15	3.00	4.00	4.61	6.20	7.98	9.85	12.28						
G	2.45	2.38	3.19	3.38	4.25	5.13	6.38	7.75						
Н	0.77	0.77	0.99	1.06	1.55	2.24	1.96	2.56						
J	5/16-18	5/16-18	5/16-18	5/16-18	3/8-16	7/16-14	7/16-14	1/2-13						
Κ	0.48	0.48	0.47	0.47	0.56	0.66	0.50	0.66						
L	0.292	0.292	0.417	0.482	0.730	0.970	1.380	1.755						

Cl	Class 600 Flanged Valves													
	3/4"	1"	1-1/2"	2"	3"	4"	6"							
Α	6.32	7.25	8.06	9.94	12.25	15.00	19.62							
В	3.16	3.63	4.03	4.97	6.13	7.50	9.81							
С	2.38	2.38	2.75	3.50	4.75	5.50	7.00							
D	1.19	1.19	1.38	1.75	2.38	2.75	3.50							
Е	2.21	2.15	2.83	3.54	4.18	4.88	4.97							
F	4.65	4.71	6.08	6.92	8.43	10.38	12.09							
G	2.44	2.56	3.25	3.38	4.25	5.50	7.12							
Н	0.76	0.76	1.27	1.03	1.54	2.25	1.34							
J	3/8-16	3/8-16	1/2-13	1/2-13	1/2-13	1/2-13	3/4-10							
Κ	0.47	0.47	0.66	0.66	0.66	0.75	1.00							
L	0.412	0.412	0.475	0.535	0.730	0.970	1.380							

CI	Class 600 Buttweld													
	3"	4"	6"											
А	2.50	2.90	4.19											
В	5.96	7.36	7.91											
С	1.54	2.25	1.34											
D	1.125	1.500	2.000											
Е	8.620	11.000	15.000											
F	4.310	5.500	7.500											
G	2.330	2.800	4.160											
Н	1.150	1.400	2.130											
J	0.730	0.970	1.380											
Κ	7.56	9.38	12.88											
L	1/2-13	1/2-13	3/4-10											
М	0.61	0.75	1.00											
Ν	8.45	10.25	12.10											

Flanged Series Top Entry Full Port Ball Valve Dimensional Data

ANSI 150 Class Full Port Flanged Top Entry Valves

Size	А	В	С	D	Е	F	G	н	J			
1"	1.17	3.50	7.00	4.27	5.94	2.05	3.12	.62	4			
1-1/2"	1.50	4.37	8.75	5.05	7.87	2.51	3.87	.62	4			
2"	2.25	5.25	10.50	7.61	19.12	3.23	4.75	.62	4			
3"	3.00	6.75	13.50	9.33	19.50	3.80	6.00	.75	4			
4"	4.50	8.50	17.00	12.32	36.00	5.39	7.50	.75	8			
6"	6.00	10.75	21.50	15.57	43.00	6.67	9.50	.87	8			
8"	8.00	12.25	24.50	18.32	NA	9.39	11.75	.87	8*			
• Top	Top 2 Holes in each flange are tapped 3/4-10 UNC-2B											

ANSI 300 Class Full Port Flanged Top Entry Valves

Size	А	В	С	D	Е	F	G	н	J				
1"	1.17	3.75	7.50	4.27	5.94	2.08	3.50	.75	4				
1-1/2	" 1.50	4.75	9.50	5.05	7.87	2.55	4.50	.87	4				
2"	2.25	5.56	11.13	7.61	19.12	3.27	5.00	.75	8				
3"	3.00	7.62	15.25	9.33	19.50	3.91	6.63	.87	8				
4"	4.50	9.00	18.00	12.32	36.00	5.45	7.88	.87	8				
6"	6.00	11.00	22.00	15.57	43.00	6.70	10.63	.87	12				
8"	8.00	13.50	27.00	18.32	NA	9.54	13.00	1.00	12*				
• Top	Top 2 Holes in each flange are tapped 7/8-9 UNC-2B												

AN Toj	ANSI 600 Class Full Port Flanged Top Entry Valves													
Size	Size A B C D E F G H J													
1"	1" 1.17 5.00 10.00 6.06 12.50 2.40 3.50 .75 4													
1-1/2	" 1.50	6.25	12.50	7.15	14.75	3.06	4.50	.87	4					
2"	2.25	6.50	13.00	9.76	19.12	3.70	5.00	.75	8					
3"	3.00	8.75	17.50	11.45	19.50	4.48	6.63	.87	8					
4"	4.50	10.00	20.00	12.44	NA	6.13	8.50	1.00	8					
6"	6.00	13.00	26.00	15.28	NA	7.50	11.50	1.12	12					
8"	8" 8.00 15.62 31.25 18.58 NA 11.42 13.75 1.25 12*													
• Top	2 Holes	s in each	flange ar	e tapped	1-1/8 UI	N-2B								

Flanged Series Top Entry Full Port Ball Valves Actuator Mounting Data

M٢

н

Ġ

Dimensions For Actuator Pad Style Mounting

ANS	SI 150	Class Fi	ull Port	Flange	d Top E	ntry Va	lves							
Size	А	В	С	D	Е	EE	F	G	GG	н	J	К	L	М
1"	6.44	3.22	1.75	.88	1.71	NA	4.09	2.38	NA	.99	5/16-18	.48	.417	.625
1-1/2"	8.06	4.03	1.75	.88	2.27	NA	4.90	2.63	NA	1.06	5/16-18	.47	.482	.750
2"	9.68	4.84	2.25	1.13	3.37	NA	6.50	3.13	NA	1.55	5/16-18	.47	.730	1.125
3"	12.48	6.24	3.50	1.75	4.58	NA	8.46	3.88	NA	2.24	3/8-16	.56	.970	1.500
4"	15.81	7.91	4.00	2.00	5.23	NA	10.27	5.04	NA	1.96	7/16-14	.66	1.380	2.000
6"	20.25	10.13	4.00	2.00	6.13	2.73	12.29	6.16	9.56	1.00	7/16-14	.66	Fig. 1	Fig. 1
8"	NA	NA	NA	NA	NA	5.77	NA	NA	12.37	NA	NA	NA	Fig 2	Fig. 2
10"	19.75	8.88	7.00	3.50	6.50	NA	15.50	9.00	NA	2.90	3/4-10	1.25	2.030	2.933
ANS	SI 300	Class Fi	ull Port	Flange	d Top E	ntry Va	lves							
				Ŭ										
1"	6.69	3.35	1.75	.88	1.74	NA	4.12	2.38	NA	.99	5/16-18	.48	.417	.625
1-1/2"	8.63	4.31	1.75	.88	1.75	NA	4.94	3.19	NA	1.06	5/16-18	.47	.482	.750
2"	9.90	4.95	2.25	1.13	3.16	NA	6.54	3.38	NA	1.55	5/16-18	.47	.730	1.125
3"	13.68	6.84	3.50	1.75	4.32	NA	8.57	4.25	NA	2.24	3/8-16	.56	.970	1.500
4"	16.50	8.25	4.00	2.00	5.20	NA	10.33	5.13	NA	1.96	7/16-14	.66	1.380	2.000
6"	20.38	10.19	4.00	2.00	5.41	2.73	12.32	6.91	9.59	1.00	7/16-14	.66	Fig. 1	Fig. 1
8"	NA	NA	NA	NA	NA	5.77	NA	NA	12.52	NA	NA	NA	Fig. 2	Fig. 2
ANS	SI 600	Class Fi	ull Port	Flange	d Top E	ntry Va	lves							
1"	8.75	4.38	2.38	1.19	3.56	NA	6.12	2.56	NA	1.27	3/8-16	.47	.475	.750
1-1/2"	11.06	5.53	2.75	1.38	3.75	NA	7.00	3.25	NA	1.03	1/2-13	.66	.535	.875
2"	11.38	5.69	3.50	1.75	5.20	NA	8.66	3.46	NA	1.54	1/2-13	.66	.730	1.125
3"	15.56	7.78	4.75	2.38	6.45	NA	10.70	4.25	NA	2.25	1/2-13	.66	.970	1.500
4"	17.75	8.88	5.50	2.75	6.94	NA	12.44	5.50	NA	1.34	1/2-13	.75	1.380	2.000
6"	23.44	11.72	7.00	3.50	8.21	NA	15.33	7.12	NA	2.56	3/4-10	1.00	1.380	2.360
8"	NA	NA	NA	NA	NA	5.77	NA	NA	12.78	NA	NA	NA	Fig. 2	Fig. 2

Apollo[®] Top Entry Valve Operating Torques

Torque Constants for Apollo [®] Top Entry Ball Valves****									
Sea	t								
Optic	ons	Size	100	285	500	740	1480		
*1	*7	1/2 thru 1"	85	110	140	180	290		
		1-1/2"	205	260	330	415	660		
2	Α	2"	350	430	550	735	1,200		
3	С	3"	950	1,250	1,650	2,000	3,200		
		4"	2,000	2,500	3,300	4,100	6,500		
5	D	6"**	5,300	6,700	8,200	11,400	18,000		
6	Ζ	8"**	11,000	14,000	18,500	25,000	36,000		
		10"**	18,500	22,000	30,000	40.000	62,000		
Seat		Valve	Diff	erential	Pressure	es (psig)			
Optio	ns	Size	100	285	500	740	1480		
		1/2 thru 1"	115	160	210	260	450		
4		1-1/2"	270	370	480	590	1,000		
8		2"	475	650	860	1,050	1,750		
***9	L	3"	1,250	1,850	2,400	2,950	4,900		
		4"**	2,700	3,700	4,900	5,900	10,000		
В		6"**	7,410	10,100	13,400	16,400	25,300		
	_ [8"**	15,000	20,000	26,000	34,500	56,000		
		10"**	25,000	32,000	45,000	60,000	96,000		
*Redu	ice to	rque by 30%	for PTFE seat	is nded					

**Gear operator or actuation recommended

***Increase torque by 10% for Ceramic seats

****For full port figures, use one valve size larger

Torque Adjustment Factors							
Provision	Condition	Additional Factor					
Type of Operation	ON/OFF Service Modulating	0 0.25					
Process Media	Liquid, Clean Particle Free Liquid, Dirty, Slurry, Raw Water Liquid, Black Liquor, Lime Slurry Liquid, Oil, Lubricating Liquid, Viscous, Molasses Gas, Clean & Wet, Saturated Steam Gas, Dry, Superheated Steam Gas, Dirty, Air Slurry, Natural Gas Oxygen, Chlorine	0 0.3 to 0.8 0.8 -0.3 0.3 0.3 0.3 to 0.5 0.5 to 1 0.5					
Frequency of Operation	Once per Day or More Once per Day to Once per Week Once per Week to Once per Month Once per Month or Less	0 0.2 0.5 1					

Example:

Selected Valve: 3" 150 w/#6 seat	(Model: CS-C60-BO1)
Torque Constant:	1250 in-lbs
Service Factors:	
ON/OFF Service	0.0
Clean Dry Air	0.3
Weekly Operation	0.2
Net Service Factor	0.5

"In Service" Valve Torque: $1250 \times (1 + 0.5) = 1875$ in-lbs This is the valve torque used to select an actuator. There are several elements involved in developing an appropriate "in-service" valve operating torque. Selection of the basic valve torque constant, shown at the left establishes the nominal valve torque based on the valve size, specified valve seat and the approximate working pressure.

Armed with the nominal valve operating torque, adjustments are now made to account for individual service conditions. These factors are selected from the table at the lower left. They are additive, or combined in series and used to arrive at the "in-service" torque.

Extended Bonnets

Features:

- Extended bonnets for Apollo® Top Entry Ball Valves are available for sizes 1/2" through 8" in classes 150 and 300. Extended bonnets are standard for all class 600 valves.
- These bonnets provide excellent performance in high temperature or semi cryogenic applications.
- This bonnet design places the stem seals further away from the process flow thereby maintaining temperatures closer to ambient.
- Insulation can be applied to the bonnet reducing the chance of disturbance as would be caused by a stem extension. If and when stem leakage occurs it can be immediately observed and corrective action taken without insulation removal.
- A valuable feature of the Extended Bonnet is that it is field retrofitable. In addition to being able to order valves with several bonnet styles direct from the factory, kits are available that are pre-assembled with the stem, bonnet, packings, glands and jam nut installed and properly torqued for dependable performance. Contact the factory for kit part numbers for any specific valve or application.

Materials of Construction:

Extended bonnets are available in the same broad selection of materials of construction as those illustrated on page 5 for the bonnet, stem, stem packings, packing gland, nuts and body seals.

Size A B C 3/4" 2.55 2.25 0.77 1" 2.55 2.25 0.77 1-1/2" 3.54 3.18 0.99 2" 4.14 3.66 1.06 3" 5.27 4.66 1.55 4" 6.66 6.11 2.24 6" 6.88 6.15 1.96 8" 7.77 6.79 2.56	Class	150 &	300	Extended Bonnets
3/4" 2.55 2.25 0.77 1" 2.55 2.25 0.77 1-1/2" 3.54 3.18 0.99 2" 4.14 3.66 1.06 3" 5.27 4.66 1.55 4" 6.66 6.11 2.24 6" 6.88 6.15 1.96 8" 7.77 6.79 2.56	Size	А	В	С
1" 2.55 2.25 0.77 1-1/2" 3.54 3.18 0.99 2" 4.14 3.66 1.06 3" 5.27 4.66 1.55 4" 6.66 6.11 2.24 6" 6.88 6.15 1.96 8" 7.77 6.79 2.56	3/4"	2.55	2.25	0.77
1-1/2" 3.54 3.18 0.99 2" 4.14 3.66 1.06 3" 5.27 4.66 1.55 4" 6.66 6.11 2.24 6" 6.88 6.15 1.96 8" 7.77 6.79 2.56	1"	2.55	2.25	0.77
2" 4.14 3.66 1.06 3" 5.27 4.66 1.55 4" 6.66 6.11 2.24 6" 6.88 6.15 1.96 8" 7.77 6.79 2.56	1-1/2'	3.54	3.18	0.99
3" 5.27 4.66 1.55 4" 6.66 6.11 2.24 6" 6.88 6.15 1.96 8" 7.77 6.79 2.56	2"	4.14	3.66	1.06
4" 6.66 6.11 2.24 6" 6.88 6.15 1.96 8" 7.77 6.79 2.56	3"	5.27	4.66	1.55
6" 6.88 6.15 1.96 8" 7.77 6.79 2.56	4"	6.66	6.11	2.24
8" 7.77 6.79 2.56	6"	6.88	6.15	1.96
	8"	7.77	6.79	2.56

Fugitive Emissions Stem Seals

Following a detailed testing program it has been found that the double stack of RPTFE Chevron style packings clearly

outperformed the other contenders evaluated. In applications where this material is acceptable, it would be the hands-down choice. However, when

resistance to high temperatures is a must, such as in a valve requiring fire-safe performance, then the Grafoil® packings must be considered.

With any of the styles of grafoil packings tested it is reasonable to expect that over the anticipated life of the packing (100,000 cycles) two (2) packing adjustments will be required. From the testing, the first adjustment could be anticipated around the 20,000

cycle point and the second some time after the 60,000 cycle mark. The primary offering in Grafoil® fugitive emis-

> sions style packings for Apollo® Top Entry Ball Valves will be the double stack arrangement provided by Garlock® under the trade name EVSP.

The results are presented here in 5000 cycle increments. Measurements were taken more frequently and those other data points showed no evidence of any trends in the growth of a leak from a minor status to one requiring adjustment. Through process monitoring, statistical data can be used to establish preventive maintenance schedules showing packing adjustment intervals.

Leakage Rate in PPM Methane								
Cycle Count	Double Stack RPTFE Chevrons	Double Stack Grafoil®						
5000	0	0						
10,000	0	0						
15,000	0	0						
20,000	4	1						
25,000	3	42*						
30,000	4	0						
35,000	18	0						
40,000	14	0						
45,000	13	2						
50,000	3	3						
55,000	4	3						
60,000	8	3						
65,000	14	4						
70,000	30	92*						
75,000	24	0						
80,000	24	0						
85,000	23	2						
90,000	52*	11						
95,000	0	0						
100,000	0	0						
*Indicates a packing Grafoil® is a register	adjustment was made. ed trademark of Union Carbi	de.						
Garlock® is a registe	ered trademark of Coltec Indu	ustries.						

Fugitive Emisions Bonnet Dimension

Features:

- Two types of the Fugitive Emissions Bonnet are available. The first type intended for manual operation is not live loaded. Testing has shown that live loading only becomes necessary in high cycle applications. This leads to the second type, the live loaded version. This second type not only is more appropriate for unattended automated operations and high cycle applications, it is also well suited for applications involving thermal cycling.
- Two styles of packings are available for the Fugitive Emissions bonnet. The primary offering is a double stack of RPTFE Chevrons. The second option is a specially contoured double stack of "Die Formed" graphoil rings.
- The lower, primary packing stack is pressure activated as well as mechanically loaded. The upper packing stack acts as back-up seals in the case of primary seal failure. A purge port is available between the two stacks for the purpose of detecting primary seal leakage.
- One of the most valuable features of the Fugitive Emissions Bonnet is that it is field retrofitable to existing installations. In addition to being able to order Top Entry valves with any of three bonnet styles direct from the factory, kits are available that are pre-assembled with the stem, bonnet, packings, glands and jam nut installed and properly torqued for dependable performance. In the case where the service or regulations change and a design upgrade is required, the Top Entry Ball valve is designed to accomodate these changes. Contact the factory for kit part numbers for any specific valve or application.

Materials of Construction:

Extended bonnets are available in the same materials of construction as those illustrated on page 5 for the bonnet, stem, stem packings, packing gland, nuts and body seals.

Class 150 & 300 Valves LIVE LOADED FUGITIVE EMISSIONS BONNET										
	3/4"	1"	1-1/2"	2"	3"	4"	6"			
A	3.41	3.41	3.90	5.20	6.31	7.37	8.03			
В	3.11	3.11	3.54	4.72	5.70	6.80	7.30			
С	0.98	0.98	0.85	1.35	1.47	2.27	1.30			
Class 150 & 300 Valves										
Class	<mark>150 8</mark>	<mark>، 300</mark>	Valve	es						
FUGIT	150 8 IVE EI	300 ، MISS	Valve IONS	es BON	INET					
FUGIT	150 & IVE EI _{3/4"}	2300 1" 1	Valve IONS	2"	INET 3"	4"	6"			
	150 & IVE EI 3/4" 2.55	2300 VISS 1" 2.55	Valve IONS 1-1/2" 3.54	2" 4.14	INET 3" 5.27	4" 6.66	6" 6.88			
FUGITI A B	150 & IVE EI 3/4" 2.55 2.25	2 300 VISS 1" 2.55 2.25	Valve iONS 1-1/2" 3.54 3.18	2" 4.14 3.66	3" 5.27 4.66	4" 6.66 6.11	6" 6.88 6.15			
FUGITI A B C	150 & IVE EI 3/4" 2.55 2.25 0.77	2300 VISS 1" 2.55 2.25 0.77	Valve IONS 1-1/2" 3.54 3.18 0.99	2" 2" 4.14 3.66 1.06	3" 5.27 4.66 1.55	4" 6.66 6.11 2.24	6" 6.88 6.15 1.96			

Class 600 Valves LIVE LOADED FUGITIVE EMISSIONS BONNET

	3/4"	1"	1-1/2"	2"
A	3.27	3.27	4.54	5.03
В	2.85	2.85	4.12	4.55
С	0.99	0.99	1.04	1.10

Steam Jacketed Apollo[®] Top Entry Ball Valves

Conbraco's Apollo[®] Top Entry Ball Valves are ideally suited for jacketed applications. The top entry concept allows for continued access to stem packings and valve internals for ease of maintenance without disturbing the jacket itself or removing the valve from the pipeline.

Partial jacketing (Option "PJ") may be used on standard valves. Partial jacketing is applied just to the center section of the valve and does not incorporate the neck area or flanges of the valve. It is generally specified to allow the use of standard flanges and retain conventional flange bolting. Fully jacketed, standard flange valves have modified flanges with blind tapped stud holes in place of the ordinary through holes.

Welded full jacketing may be applied to valves with standard flanges (Option "FS") or oversize flanges (Option "FO"). Valves and jacketing can be supplied in a variety of materials. Common materials are stainless valves with stainless jackets, but exotic combinations such as Alloy 20 valves with carbon steel flanges and carbon steel jacketing have been supplied to meet the performance and cost requirements for specific applications.

Clamp-on jacketing (Option "CJ") offers flexibility not available in the other configurations. Clamp-on jacketing can be applied to valves already in service, or can be removed and reinstalled on a replacement valve or another similar valve in another application. Clamp-on jackets can be supplied as a weldment or in cast aluminum. A heat transfer compound can be applied between the clamp-on jacket and valve to improve its efficiency.

Combining these jacketed valves with extended bonnets for safe convenient operation, and adding carbon graphite seats or ceramic balls and seats enables the valve to handle a broad range of viscous materials.

Seat Performance Data

#1 (PTFE)

General application seat material, exhibiting lowest operating torque and excellent resistance to chemical attack. (Figure 1) Reference chart 1

#2 (RPTFE)

Most commonly specified seat material, and used as the basis for published torque values. Maintains the excellent chemical resistance of unfilled Teflon® (PTFE) with increased resistance to wear and abrasion resulting in longer life. (Figure 1) Reference Chart 2

#3 (RPTFE w/Inner Ring)

Features a metallic inner ring to improve abrasion resistance particularly in high solids or throttling applications. Maintains the other features of the #2 seat. (Figure 2) Reference Chart 2

#7 (API 607 Cert. PTFE) to 500°F

This seat design has been successfully tested to the requirements of API 607, fourth edition. The PTFE seat is fully confined by a metallic seat holder which provides a secondary seal in the event of the loss of the primary PTFE seal due to a fire. As the seat seal material is PTFE, chemical and torque characteristics will be the same as in the #1 seats. **(Figure 3)** Reference Chart 1

#A (API 607 Cert. RPTFE) to 550°F

This seat design has been successfully tested to the requirements of API 607, fourth edition. The RPTFE seat is fully confined by a metallic seat holder which provides a secondary seal in the event of the loss of the primary PTFE seal due to a fire. The seat holder can perform the same function as the inner ring found in the #3 and #5 seats making this design appropriate for abrasive and throttling applications. As the seat seal material is RPTFE, chemical and torque characteristics will be the same as in the #2 and #3 seats. **(Figure 3)** Reference Chart 2

#5 (55%Bronze/5%Moly BRTFE)

Specifically intended for steam applications. Also applicable to abrasive and throttling applications because of the heavy loading of reinforcing materials and the presence of the inner ring. However, chemical compatibility may be a limiting factor in the application of this seat. **(Figure 2)** Reference Chart 3

"D" (60% Stainless Steel SRTFE)

Intended for abrasive and throttling applications because of the heavy loading of reinforcing materials and the completely confined seat. (Figure 2) Reference Chart 2

#6 (UHMWPE)

Ultra High Molecular Weight Polyethylene offers good abrasion resistance making it suitable for use in high solids or slurry applications. These seats are completely confined by a metallic seatholder enhancing their performance in abrasive services. This seat is frequently specified in services where fluorine off-gasing in even the slightest amounts is objectionable. Examples of these services are food, tobacco processing, and nuclear services. (Figure 2) Reference Chart 4

"U" (UHMWPE)

Exhibits the same characteristics as the #6 seat with the exception that it utilizes the inner seat ring to enhance performance in abrasive services. UHMWPE should be used with caution in the presence of solvents, and the operating torque can be expected to be 30% higher than that of the teflon based seat materials. (Figure 1) Reference Chart 4

#8 (PEEK)

PEEK (PolyEtherEtherKetone) offers a high strength alternative to RPTFE, resistant to creep and cold flow. This seat offers good abrasion resistance. Higher in cost, this material offers similar chemical resistance to PTFE but should be checked on application. Operating torque tend to be 40% higher than RPTFE. Ball stop recommended. (Figure 2) Reference Chart 5

#B (Carbon Reinforced, PEEK)

Carbon Reinforced PEEK provides improved abrasion resistance when compared to the unfilled variety. Higher in cost, this material offers a broader temperature range than RPTFE with similar chemical resistance but should be checked on application. Operating torque tends to be 40% higher than RPTFE. Ball stop recommended. **(Figure 2)** Reference Chart 5

#4 (Carbon Graphite)

Designed for high temperature applications. A ball stop is required in applications above 500°F. Maximum service temperature is limited to 750°F in oxidizing applications. This seat like all rigid seat materials does not necessarily provide "bubble tight" shut-off. Most test standards have allowable leakage rates or list "classes" of shut-off for this type of seat. Be aware of the system design requirements when specifing this or any rigid seat. Ball stop recommended. **(Figure 1)** Reference Chart 6

#H (High Temperature Graphite)

Designed for very high temperature applications. A ball stop is required in applications above 500°F. Maximum service temperature is limited to 1000°F. This seat like other rigid seat materials does not provide "bubble tight" shut-off. This seat is not as abrasion resistant as the #4 version. Be aware of the system design requirements when specifing this or any rigid seat. Ball stop

recommended. (Figure 1) Reference Chart 6

#9 (Ceramic)

Working in conjunction with a ceramic ball, this seat outperforms all other materials in throttling and abrasive applications. It possesses excellent chemical resistance. Cost is very high, and unless experience dictates its use, other alternatives should be evaluated first. A ball stop is recommended for all applications. This seat like all rigid seat materials does not necessarily provide "bubble tight" shut-off. Most test standards have allowable leakage rates or list "classes" of shut-off for this type of seat. Be aware of the system design requirements when specifing this or any rigid seat. **(Figure 4)** Reference Chart 7

[®] Teflon is a registered trademark of DuPont

Pressure (psig)

1500

Pressure (psig)

Temperature (F)

= 150 CS = 150 SS

RPTFE Seats P-T Ratings

Temperature (F)

CONBRACO

Apollo [®] Top Entr	y Full Port	Valve Flo	w Coefficients	
Valve	150	300	600	
Size	Class	Class	Class	
	Flanged	Flanged	Flanged	
1"	95	90	85	
1-1/2"	230	225	200	
2"	435	420	400	
3"	1050	1000	950	
4"	1950	1900	1800	
6"	4800	4300	4300	
8"	9100	8700	8000	

Apollo[®] Top Entry Valve Flow Coefficients

Valve Size	150 Class Flanged End	300 Class Flanged End	300 Class Buttweld End	300 Class Socket Weld	300 Class NPT	600 Class Flanged End	600 Class Buttweld End	600 Class Socket Weld	600 Class NPT	
1/2"				20	20			20	20	
3/4"	50	50	50	30	30	50	50	30	30	
1"	60	60	60	40	40	60	60	40	40	
1-1/2"	100	100	100	70	70	100	100	70	70	
2"	180	180	180	120	120	190	190	120	120	
3"	330	400	400	260	260	410	410	260	260	
4"	600	720	720				780	780		
6"	1,500	1,500	1,500				1,700	1,700		
8"	2,500	2,500					3,100			
10"	3,800	3,800					4,900			

The table above presents the Flow Coefficients (Cv) for Apollo® Top Entry Ball Valves. This number represents the flow (in gallons per minute of water) required to produce a 1 psig pressure drop across the valve. The data shown is for a valve in the full open position. Data for various degrees of open are available upon request. The values shown represent the average for several tests which highlighted the variability of Flow Coefficients. It is not unreasonable to expect a 10% to 20% deviation for a specific valve from the nominal figures shown.

Knowing specific system characteristics; such as line size, flow rate, temperature and pressure and knowing specific fluid characteristics; such as specific gravity, density, or compressibility factor allows the verification of the pressure drop across a known valve. Or conversely, in the absence of a valve size and knowing an acceptable pressure drop under the described flow conditions it is possible to select an appropriately sized valve.

Sales Department P.O. Box 247 Matthews, NC 28106 Phone: 704-841-6000 Fax: 704-841-6021 International Sales Department P.O. Box 247 Matthews, NC 28106 Phone: 704-841-6000 Fax: 704-841-6020 Customer Service Department P.O. Box 247 Matthews, NC 28106 Phone: 704-841-6000 Fax: 704-841-6020

			E/Mail Address	Phone	Fax
	Five Star Sales	Florida except Panhandle	fss5star@yahoo.com	941-574-1050	941-574-4214
ion	Valves & Fittings, Inc.	Georgia/Alabama/Florida Panhandle/Tennessee-East	sales@valves-fittings.com	770-483-3057	770-483-3110
outh Reg	Pro Marketing, Inc.	North Carolina/South Carolina	sales@promarketinginc.net	864-578-4334	864-578-4889
s	Mid South Marketing	Virginia/Maryland/Washington, D.C./WV-East	midsouth7@aol.com	804-749-8712	804-749-8717
5 6	Southern Marketing Group	MS/TN-West/AR/Bowie CtyTX	SMG49@bellsouth.net	901-547-0042	901-547-0035
egio	Advanced Valves & Controls	Oklahoma/Texas-North	valvesales@avalve.com	817-649-2229	817-649-2225
Sol R.	Knox & Associates, Inc.	Texas-South/Louisiana	knox1@pdq.net	713-462-7766	713-690-6228
	HEBCO, Inc.	Kansas/Missouri-West	chuckHEBCO@aol.com	913-491-0797	913-491-5126
E	New Tech Marketing, Inc.	IL/WI-East/IN-North/MI-Upper Peninsula/IA-River Counties	ntm12@ameritech.net	630-378-4300	630-378-0343
egic	New Tech Marketing, Inc.	Eastern Missouri/Southern Illinois	ntm112@aol.com	618-394-0329	618-394-0427
E E	L.J. Whitfill & Associates, Inc.	Kentucky/Indiana-South/Ohio-South	ljwhitfill@aol.com	502-459-4545	502-459-9944
este	V.E. Sales Co., Inc.	Michigan (Except Upper Peninsula)	tomv@vesalesinc.com	586-774-7760	586-774-1490
idw	Northstar Valve & Fitting, Inc.	Minnesota/North & South Dakota/Wisconsin-West	nsvalve@aol.com	952-937-0108	952-937-0803
Σ	Willco, Inc.	Nebraska/Iowa (Except River Counties)	willcoinc@att.net	402-573-7000	402-573-7371
	Morrissey Associates, Inc.	Ohio-North/Pennsylvania-West/West Virginia-West	sales@morrisseyassoc.com	330-538-0406	330-538-0410
	Creatived Dreases Environment Co	California Marth	iaha Qanaaliiadaaaaaa aana		707 747 4057
	Specified Process Equipment Co.			707-747-3400	707-747-4957
egio	Socal controls, Inc.		sales@socalcontrols.com	714-930-9033	714-955-9505
'nR		CU/WY/WI//ID-SE/UT/NV-NE/NW/EI Paso-TA		303-575-6701	303-575-0700
ster	J.P. Harris & Associates, Inc.		Jim@jpnamsassoc.com	360-944-8457	360-944-8459
₩.	Layden valve Sales & Solutions		will@laydenvalve.com	808-450-3331	808-455-1064
	Southwestern Mechnical Sales Co.	Allzona/Nevaua-Sw	Sales@Swiftech.com	480-813-1313	480-813-2280
	liroll inc	Massashusatts/Now England States	doug@urall.com	417 022 0E00	617 026 0414
	Dien, n.c.	Nassachuseus/New Linglahu States		215 422 0044	215 422 0200
heas	Continuous Salos Cornoration	New York East/New Jorson North	penceassociales@aui.com	515-425-0000	515-423-0290
Rec		Deprevilvania East/Delawara/New Jersov South	csco7@doi.com	210-240-3177	410 250 1200
2	J.A. Layuell CO.	OFM appoints	Sales@jalayuen.com	610-505-2511	610-539-1299
	Kelin Engle & Associates		Kea@P3.Het	010-827-9500	010-827-9501
	Conbraco Industries, Canada	160 Pennsylvania Ave., Unit 3, Concord, Ontario L4K 4A9	conbraco@conbraco.on.ca	905-761-6161	905-761-6666
	Barclay Sales Ltd.	British Columbia	mail@barclaysales.com	604-945-1010	604-945-3030
	M.A. Stewart & Sons, Ltd.	British Columbia, Alberta, Ontario, Quebec	surrey@mastewart.com	604-594-8431	604-594-4335
	Mechanical Systems 2000, Inc.	Alberta-South	hoth20@telusplanet.net	403-291-1244	403-219-0686
	Dynamic Agencies, Ltd.	Saskatchewan	doug.dynamicage@sk.sympatico.ca	306-343-1901	306-343-1901
ga	Tom Beggs Agencies Ltd.	Manitoba/NW Ontario	TBA@MB.SYMPATICO.CA	204-953-1900	204-774-6915
Cana	Task Controls, Inc.	Ontario	taskcontrols@on.aibn.com	416-291-3004	416-754-3481
	Agences J. Pierre Sylvain, Inc.	Quebec	agencespsylvain@videotron.ca	450-655-9588	450-641-2737
	Kern Industries, Ltd.	Alberta-North	kernind@telusplanet.net	780-451-2056	780-454-6687
	J. Levandier Sales, Inc.	Nova Scotia, New Brunswick, Prince Edward Island	jlssales@istar.ca	506-858-1615	506-858-1084
	Smith Agencies	Newfoundland	smithagencies@roadrunner.nf.ne	t 709-364-8856	709-747-9414
	Key to the North Sales Agency, Inc.	. Ontario-North	keytothenorthsales@sympatico.c	a705-524-6714	705-566-0148
	Pelco Sales	Eastern-Ontario/Ottawa	pelco@cyberus.ca	613-839-0114	613-839-0115
ico	Defeel Dedrigues Persil Inc.	Duarta Dica	rauli@reborril.com	707 750 0400	707 750 000/
to R	Raidei Kuuriyuez Barrii, Inc.	Manchacter England	raunen Darni.com	101-107-000U	101-107-0900
Ir Puer	Condraco industries, intri. (Europe)	i mainanester, Erigiana	Sales@colidiaco.co.uk	+44-101-708-2340	+44-101-908-2359

For Representatives And Distributors In Your International Area

Please Contact The Closest Conbraco Industries International Office