3WHB10K 3-WIRE HALF BRIDGE TERMINAL INPUT MODULE INSTRUCTION MANUAL

3/96

COPYRIGHT (c) 1996 CAMPBELL SCIENTIFIC, INC.

WARRANTY AND ASSISTANCE

The **3WHB10K 3-WIRE HALF BRIDGE TERMINAL INPUT MODULE** is warranted by CAMPBELL SCIENTIFIC, INC. to be free from defects in materials and workmanship under normal use and service for twelve (12) months from date of shipment unless specified otherwise. Batteries have no warranty. CAMPBELL SCIENTIFIC, INC.'s obligation under this warranty is limited to repairing or replacing (at CAMPBELL SCIENTIFIC, INC.'s option) defective products. The customer shall assume all costs of removing, reinstalling, and shipping defective products to CAMPBELL SCIENTIFIC, INC. CAMPBELL SCIENTIFIC, INC. will return such products by surface carrier prepaid. This warranty shall not apply to any CAMPBELL SCIENTIFIC, INC. products which have been subjected to modification, misuse, neglect, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied, including warranties of merchantability or fitness for a particular purpose. CAMPBELL SCIENTIFIC, INC. is not liable for special, indirect, incidental, or consequential damages.

Products may not be returned without prior authorization. To obtain a Returned Materials Authorization (RMA), contact CAMPBELL SCIENTIFIC, INC., phone (435) 753-2342. After an applications engineer determines the nature of the problem, an RMA number will be issued. Please write this number clearly on the outside of the shipping container. CAMPBELL SCIENTIFIC's shipping address is:

CAMPBELL SCIENTIFIC, INC. RMA#_____ 815 West 1800 North Logan, Utah 84321-1784

CAMPBELL SCIENTIFIC, INC. does not accept collect calls.

Non-warranty products returned for repair should be accompanied by a purchase order to cover the repair.

-815 W. 1800 N. Logan, UT 84321-1784 USA

Phone (435) 753-2342 FAX (435) 750-9540 www.campbellsci.com Campbell Scientific Canada Corp. 11564 -149th Street Edmonton, Alberta T5M 1W7 CANADA Phone (780) 454-2505 FAX (780) 454-2655

CAMPBELL SCIENTIFIC, INC.

Campbell Scientific Ltd. Campbell Park 80 Hathern Road Shepshed, Loughborough LE12 9GX, U.K. Phone +44 (0) 1509 601141 FAX +44 (0) 1509 601091

3WHB10K 3-WIRE HALF BRIDGE TERMINAL INPUT MODULE

1.0 FUNCTION

Terminal input modules connect directly to the datalogger's input terminals to provide completion resistors for resistive bridge measurements, voltage dividers, and precision current shunts.

FIGURE 1-1. Terminal Input Module

2.0 SPECIFICATIONS

10 kOhm Completion Resistor

Tolerance @ 25°C	±0.01%
Temperature coefficient	
0°-60°C	±4 ppm/°C
-55°-125°C	±8 ppm/°C
Power rating @ 70°C	0.25 W

FIGURE 2-1. Schematic

3.0 WIRING

FIGURE 3-1. 3-Wire Half Bridge Used to Measure PRT

4.0 PROGRAMMING EXAMPLES

The following examples simply show the two instructions necessary to 1) make the measurement and 2) calculate the temperature. The result of the 3-wire half bridge measurement as shown is R_s/R_o , the input required for the PRT algorithm to calculate temperature.

All the examples are for a 100 ohm PRT in the 3WHB10K. The excitation voltages used were chosen with the assumption that the temperature would not exceed 50°C. Tables 4-1 and 4-2 list excitation voltage as a function of maximum temperature and the input voltage ranges used with the different dataloggers. Calculation of optimum excitation voltage is discussed in Section 5.1.

The multiplier shown is for a 100 ohm PRT. The multiplier for a 1000 ohm PRT is 10. TABLE 4-1. Excitation Voltage for 100 Ohm PRT in 3WHB10K Based on Maximum **Temperature and Input Voltage Range**

р		Excitation Voltage, mV			
Max.	PRT	±25 mV	±50 mV		
Temp	Resistance	Input	Range,		
°C	Ohms	Range,	21X, CR7,		
		CR10(X)	CR9000		
50	119.4	2119	4237		
100	138.5	1830	3660		
150	157.31	1614	3228		
200	175.84	1447	2893		
250	194.07	1313	2626		
300	212.02	1204	2408		
350	229.67	1113	2227		
400	247.04	1037	2074		
450	264.11	971	1943		
500	280.9	915	1830		
550	297.39	866	1731		
600	313.59	822	1644		
650	329.51	784	1567		
700	345.13	749	1499		
750	360.47	718	1437		
800	375.51	691	1381		
850	390.26	666	1331		

Temperature and Input Voltage Range						
		Excitation Voltage, mV				
Max.	PRT	±200 mV	±250	±500 mV		
Temp.	Resist.	Input	mV	Input		
°C	Ohms	Range	Input	Range		
		CR9000	Range CR10	21X, CR7		
50	1194.	1875	2344	4687		
100	1385.	1644	2055	4110		
150	1573.1	1471	1839	3678		
200	1758.4	1337	1672	3343		
250	1940.7	1230	1538	3076		
300	2120.2	1143	1429	2858		
350	2296.7	1071	1338	2677		
400	2470.4	1010	1262	2524		
450	2641.1	957	1196	2393		
500	2809.	912	1140	2280		
550	2973.9	872	1091	2181		
600	3135.9	838	1047	2094		
650	3295.1	807	1009	2017		
700	3451.3	779	974	1949		
750	3604.7	755	943	1887		
800	3755.1	733	916	1831		
850	3902.6	712	891	1781		

PRT in 4WHB10K Based on Maximum

TABLE 4-2. Excitation Voltage for 1000 Ohm 4.1 CR10(X)

- 1: 3W Half Bridge (P7)
 - 1: 1 Reps
 - 23 ± 25 mV 60 Hz Rejection 2: Range 3: 1 SE Channel Excite all reps w/Exchan 1 1 4:
 - 5:2100 mV Excitation
 - Loc [Rs_R0] 6: 1
 - 7: 100 Mult
 - 8: 0 Offset

2: Temperature RTD (P16)

- 1: 1 Reps
- 2: 1 R/RO Loc [Rs_R0]
- 3: 2 Loc [Temp_C]
- Mult 4: 1.0 5:
 - 0.0 Offset

4.2 21X

- 1: 3W Half Bridge (P7)
 - 1: 1 Reps
 - 2: ± 50 mV Slow Range 3
 - 3: 1 SE Channel
 - 4: Excite all reps w/Exchan 1 1
 - 5:4200 mV Excitation
 - 6: Loc [Rs_R0] 1
 - Mult 7: 100
 - 8: Offset 0

2: Temperature RTD (P16)

- Reps 1: 1
 - 2: R/RO Loc [Rs_R0] 1
 - 2 Loc [Temp_C] 3:
 - Mult 4: 1.0
 - 5: 0 Offset

4.3 CR7

- 1: 3-Wire Half Bridge (P7)
 - 1: 1 Reps
 - 2: 4 ± 50 mV Slow Range
 - 3: 1 In Card
 - 4: 1 SE Channel
 - 5: 1 Ex Card
 - 6: 1 Ex Channel
 - 7: 1 Meas/Ex
 - 8:4200 mV Excitation
 - 9: 1 Loc [Rs_R0 10:100 Mult
 - 10:100 Mult 11: 0 Offset
 - II. U Olise
- 2: Temperature RTD (P16)
 - 1: 1 Reps
 - 2: 1 R/RO Loc [Rs_R0]
 - 3: 2 Loc [Temp_C]
 - 4: 1 Mult
 - 5: 0 Offset

4.4 CR9000

BrHalf3W(Rs_R0, 1, mV50, 5, 1, 6, 1, 1, 4200, 1, 0, 0, 100, 0) PRT(Temp_C, 1, Rs_R0)

1

5.0 100 OHM PRT IN 3 WIRE HALF BRIDGE

The advantages of the 3-wire half bridge over other measurements that correct for lead wire resistance such as a 4-wire half bridge, are that it only requires 3 lead wires going to the sensor and takes 2 single-ended input channels, whereas the 4-wire half bridge requires 4 wires and 2 differential channels.

The result of the 3-wire half bridge instruction is equivalent to the ratio of the PRT resistance, R_s to the resistance of the 10 k fixed resistor, R_f .

$$\frac{R_s}{R_f}$$

The RTD Instruction (16) computes the temperature (°C) for a DIN 43760 standard PRT from the ratio of the PRT resistance at the temperature being measured (R_s) to its resistance at 0°C (R_0). Thus, a multiplier of R_f/R_0 is used with the 4-wire half bridge instruction to obtain the desired intermediate, $R_s/R_0 = (R_s/R_f \times R_f/R_0)$. When $R_f = 10,000$ and $R_0 = 100$, the multiplier is 100; when R_0 is 1000 the multiplier is 10.

The fixed resistor must be thermally stable. Over the -55° to 85°C extended temperature range for the datalogger, the ±4 ppm/°C temperature coefficient would result in a maximum error of ±0.04°C at 60°C. The ±8 ppm/°C temperature coefficient would result in a maximum error of ±0.13°C at -55°C.

5.1 EXCITATION VOLTAGE

The best resolution is obtained when the excitation voltage is large enough to cause the signal voltage to fill the measurement voltage range. The voltage drop across the PRT is equal to the current, I, multiplied by the resistance of the PRT, R_s, and is greatest when R_s is greatest. For example, if it is desired to measure a temperature in the range of -10 to 40°C, the maximum voltage drop will be at 40°C when R_s=115.54 ohms. To find the maximum excitation voltage that can be used when the measurement range is ±25 mV, we assume V2 equal to 25 mV and use Ohm's Law to solve for the resulting current, I.

 $I = 25 \text{ mV/R}_s = 25 \text{ mV}/115.54 \text{ ohms}$

= 0.216 mA

 V_x is equal to I multiplied by the total resistance:

$$V_x = I(R_s + R_f) = 2.18 V$$

If the actual resistances were the nominal values, the 25 mV range would not be exceeded with $V_x = 2.18$ V. To allow for the tolerances in the actual resistances and to leave a little room for higher temperatures, set V_x equal to 2.1 volts.

5.2 CALIBRATING A PRT

The greatest source of error in a PRT is likely to be that the resistance at 0°C deviates from the nominal value. Calibrating the PRT in an ice bath can correct this offset and any offset in the fixed resistor in the Terminal Input Module.

The result of the 4-wire half bridge is:

$$\frac{V_2}{V_1} = \frac{I \cdot R_s}{I \cdot R_f} = \frac{R_s}{R_f}$$

With the PRT at 0°C, $R_s=R_0$. Thus, the above result becomes R_0/R_f , the reciprocal of the multiplier required to calculate temperature, R_f/R_0 . By making a measurement with the PRT in an ice bath, errors in both R_s and R_0 . can be accounted for.

To perform the calibration, connect the PRT to the datalogger and program the datalogger to measure the PRT with the 3-wire half bridge as shown in the example section. For a 100 ohm PRT use a multiplier of 100; for a 1000 ohm PRT use a multiplier of 10. Place the PRT in an ice bath (@ 0°C; $R_s=R_0$). Read the result of the bridge measurement. The reading is R_s/R_f , which is equal to R_0/R_f since $R_s=R_0$. The correct value of the multiplier, R_f/R_0 , is the multiplier used divided by this reading. For example, if, with a 100 ohm PRT, the initial reading is 0.9890, the correct multiplier is: $R_f/R_0 = 100/0.9890 = 101.11$.

5.3 COMPENSATION FOR WIRE RESISTANCE

The 3-wire half bridge compensates for lead wire resistance by assuming that the resistance of wire A is the same as the resistance of wire B (Figure 3-1). The maximum difference expected in wire resistance is 2%, but is more likely to be on the order of 1%. The resistance of R_s calculated with Instruction 7, is actually R_s plus the difference in resistance of wires A and B.

For example, assume that a 100 ohm PRT is separated from the datalogger by 500 feet of 22 awg wires. The average resistance of 22 AWG wire is 16.5 ohms per 1000 feet, which would give each 500 foot lead wire a nominal resistance of 8.3 ohms. Two percent of 8.3 ohms is 0.17 ohms. Assuming that the greater resistance is in wire B, the resistance measured for the PRT ($R_0 = 100$ ohms) in the ice bath would be 100.17 ohms, and the resistance at 40°C would be 115.71. The measured ratio R_s/R_0 is 1.1551; the actual ratio is 115.54/100 = 1.1554. The temperature computed by Instruction 16 from the measured ratio would be about 0.1°C lower than the actual temperature of the PRT. This source of error does not exist in a 4-wire half bridge where a differential measurement is used to directly measure the voltage across the PRT.